The Numerical Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and Methodology
نویسنده
چکیده
Algebraic solvers based on preconditioned Krylov subspace methods are among the most powerful tools for large scale numerical computations in applied mathematics, sciences, technology, as well as in emerging applications in social sciences. As the name suggests, Krylov subspace methods can be viewed as a sequence of projections onto nested subspaces of increasing dimension. They are therefore by their nature implemented as synchronized recurrences. This is the fundamental obstacle to efficient parallel implementation. Standard approaches to overcoming this obstacle described in the literature involve reducing the number of global synchronization points and increasing parallelism in performing arithmetic operations within individual iterations. One such approach, employed by the so-called pipelined Krylov subspace methods, involves overlapping the global communication needed for computing inner products with local arithmetic computations. Inexact computations in Krylov subspace methods, either due to floating point roundoff error or intentional action motivated by savings in computing time or energy consumption, have two basic effects, namely, slowing down convergence and limiting attainable accuracy. Although the methodologies for their investigation are different, these phenomena are closely related and cannot be separated from one another. The study of mathematical properties of Krylov subspace methods, in both the cases of exact and inexact computations, is a very active area of research and many issues in the analytic theory of Krylov subspace methods remain open. Numerical stability issues have been studied since the formulation of the conjugate gradient method in the middle of the last century, with many remarkable results achieved since then. Recently, the issues of attainable accuracy and delayed convergence caused by inexact computations became of interest in relation to pipelined conjugate gradient methods and their generalizations. In this contribution we recall the related early results and developments in synchronization-reducing conjugate gradient methods, identify the main factors determining possible numerical instabilities, and present a methodology for the analysis and understanding of pipelined conjugate gradient methods. We derive an expression for the residual gap that applies to any conjugate gradient method variant that uses a particular auxiliary vector in updating the residual, including pipelined conjugate gradient methods, and show how this result can be used to perform a full-scale analysis for a particular implementation. The paper concludes with a brief perspective on Krylov subspace methods in the forthcoming exascale era.
منابع مشابه
A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems
In this paper, two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS}) conjugate gradient method are presented to solve unconstrained optimization problems. A remarkable property of the proposed methods is that the search direction always satisfies the sufficient descent condition independent of line search method, based on eigenvalue analysis. The globa...
متن کاملHiding global synchronization latency in the preconditioned Conjugate Gradient algorithm
Scalability of Krylov subspace methods suffers from costly global synchronization steps that arise in dot-products and norm calculations on parallel machines. In this work, a modified Conjugate Gradient (CG) method is presented that removes the costly global synchronization steps from the standard CG algorithm by only performing a single non-blocking reduction per iteration. This global communi...
متن کاملOn the Numerical Stability Analysis of Pipelined Krylov Subspace Methods
Algebraic solvers based on preconditioned Krylov subspace methods are among the most powerful tools for large scale numerical computations in applied mathematics, sciences, technology, as well as in emerging applications in social sciences. The study of mathematical properties of Krylov subspace methods, in both the cases of exact and inexact computations, is a very active area of research and ...
متن کاملNumerically Stable Variants of the Communication-hiding Pipelined Conjugate Gradients Algorithm for the Parallel Solution of Large Scale Symmetric Linear Systems
By reducing the number of global synchronization bottlenecks per iteration and hiding communication behind useful computational work, pipelined Krylov subspace methods achieve significantly improved parallel scalability on present-day HPC hardware. However, this typically comes at the cost of a reduced maximal attainable accuracy. This paper presents and compares several stabilized versions of ...
متن کاملExtensions of the Hestenes-Stiefel and Polak-Ribiere-Polyak conjugate gradient methods with sufficient descent property
Using search directions of a recent class of three--term conjugate gradient methods, modified versions of the Hestenes-Stiefel and Polak-Ribiere-Polyak methods are proposed which satisfy the sufficient descent condition. The methods are shown to be globally convergent when the line search fulfills the (strong) Wolfe conditions. Numerical experiments are done on a set of CUTEr unconstrained opti...
متن کامل